A note on bounded-cohomological dimension of discrete groups
نویسندگان
چکیده
منابع مشابه
A Note on Cohomological Localization
Given a cohomological functor from a triangulated category to an abelian category, we construct under appropriate assumptions for any localization functor of the abelian category a lift to a localization functor of the triangulated category. This discussion of Bousfield localization is combined with a basic introduction to the concept of localization for arbitrary categories.
متن کاملAccessing the cohomology of discrete groups above their virtual cohomological dimension
We introduce a method to explicitly determine the Farrell–Tate cohomology of discrete groups. We apply this method to the Coxeter triangle and tetrahedral groups as well as to the Bianchi groups, i.e. PSL2(O) for O the ring of integers in an imaginary quadratic number field, and to their finite index subgroups. We show that the Farrell–Tate cohomology of the Bianchi groups is completely determi...
متن کاملAutomorphisms of Pro-p groups of finite virtual cohomological dimension
Let G be a pro-p group of finite cohomological dimension and type FP∞ and T is a finite p-group of automorphisms of G. We prove that the group of fixed points of T in G is again a pro-p group of type FP∞ (in particular it is finitely presented). Moreover we prove that a pro-p group G of type FP∞ and finite virtual cohomological dimension has finitely many conjugacy classes of finite subgroups.
متن کاملNormal subgroups of profinite groups of finite cohomological dimension
We study a profinite group G of finite cohomological dimension with (topologically) finitely generated closed normal subgroup N . If G is pro-p and N is either free as a pro-p group or a Poincaré group of dimension 2 or analytic pro-p, we show that G/N has virtually finite cohomological dimension cd(G) − cd(N). Some other cases when G/N has virtually finite cohomological dimension are considere...
متن کاملVirtual Cohomological Dimension of Mapping Class Groups of 3-manifolds
The mapping class group of a topological space is the group of self-homeomorphisms modulo the equivalence relation of isotopy. For 2-manifolds (of finite type), it is a discrete group which is known (see [M, HI, H2, H3, H4]) to share many of the properties of arithmetic subgroups of linear algebraic groups, although it is not arithmetic. In this note we describe the results of [Ml], which show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2017
ISSN: 0025-5645
DOI: 10.2969/jmsj/06920715